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We study the short-time distribution P(H,L,t) of the two-point two-time height difference H = h(L,t) —
h(0,0) of a stationary Kardar-Parisi-Zhang interface in 141 dimension. Employing the optimal-fluctuation
method, we develop an effective Landau theory for the second-order dynamical phase transition found previously
for L =0 at a critical value H = H.. We show that |H| and L play the roles of inverse temperature and
external magnetic field, respectively. In particular, we find a first-order dynamical phase transition when L
changes sign, at supercritical H. We also determine analytically P(H,L,t) in several limits away from the
second-order transition. Typical fluctuations of H are Gaussian, but the distribution tails are highly asymmetric.
The tails —InP ~ |H|*?/5/t and —InP ~ |H|]?/ /1, previously found for L = 0, are enhanced for L # 0.
At very large |L| the whole height-difference distribution P(H,L,t) is time-independent and Gaussian in H,
—InP ~ |H|*/|L|, describing the probability of creating a ramplike height profile at t = 0.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1] describes
an important universality class of non-equilibrium stochastic
growth [2-7]. In 1 + 1 dimension, the KPZ equation reads

ah=vﬁh+%«nm?+¢5$@JL (1)

where h(x,t) is the interface height at the point x of a substrate
at time ¢, and &(x,¢) is a Gaussian noise with zero average and

(§(x1,11)5 (x2,12)) = 8(x1 — x2)8(11 — 1). 2

The hallmark of the KPZ interface in 1+ 1 dimensions is
its late-time kinetic roughening scaling properties. The lateral
correlation length grows as */3, and the interface width grows
as t!/3,

Inrecent years, more detailed characterizations of the height
fluctuations of the KPZ interface have been explored. One of
them is the full probability distribution PP(H,t) of the single-
point, two-time interface height difference H = h(x = 0,t) —
h(x = 0,0). This distribution depends on the initial condition
h(x,t = 0). Remarkably, exact representations for the moment
generating function of exp[(1/2v)H] have been obtained for
several initial conditions; see Refs. [2,5,8] for recent reviews.

This work studies large deviations of the KPZ interface
height, as manifested by the tails of P(H,t). For some initial
conditions the long- and short-time asymptotics of these tails
have been extracted from exact representations [9-12]. Such
calculations are technically difficult and, more importantly, are
limited to the very few cases where exact representations are
known.
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The optimal fluctuation method (OFM) provides a viable
alternative to the exact representations. This approximate
method (also known as weak-noise theory, instanton method,
macroscopic fluctuation theory, etc.) originated in condensed
matter physics [13-16]. Closely related methods appeared
in the studies of turbulence and turbulent transport [17-19],
diffusive lattice gases [20], and stochastic reactions on lattices
[21,22]. The OFM has already been applied to the KPZ equa-
tion and closely related systems in many works [23-38]. The
method involves a saddle-point evaluation of the path integral
of the stochastic process conditioned on a specified large
deviation. The minimization procedure generates a classical
field theory that can be cast into Hamiltonian form. The
solution of the Hamilton equations yields the optimal (most
likely) path of the system and the most likely realization of the
noise. With the solution at hand, — InP can be found (up to
a pre-exponential factor) by evaluating the “classical” action
along the optimal path.

In this work we focus on the stationary initial condition,
where it is assumed that the interface has evolved for an
infinitely long time prior to + = 0. A statistical ensemble of
initial interface configurations i(x,t = 0) is given by random
realizations of a two-sided Brownian motion:

Mm:m:%Bm, 3)

where B(x) is the two-sided Wiener process with diffusion con-
stant 1 [39]. For this initial condition Imamura and Sasamoto
[40] and Borodin et al. [41] obtained exact representations for
‘P(H,t) in terms of Fredholm determinants. They also proved
that, in the long-time limit, # > v>/(D?A%), and in a proper
moving frame [42], the typical fluctuations of the single-point
height difference scale with time as ¢'/3, in agreement with
the exponent 1/3 of the interface width growth, and that the
distribution P of the typical fluctuations is the Baik-Rains
distribution [43].
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The short-time behavior, t < v /(D*A*), of P(H,t) was
studied by Janas et al. [34]. Using the OFM, they found
that the short-time scaling form of the height distribution
is —InP(H,t) ~ s(H)/+/t. Janas et al. [34] calculated the
large-deviation function s(H) analytically in several limits
and also computed it numerically. They found that the short-
time AH — 400 tail, —InP(H,t) ~ |H|*?//t, coincides
with that of the Baik-Rains distribution, and conjectured that
this tail is valid at all times ¢# > 0. They also conjectured
that the AH — —oo tail, —InP(H,t) ~ |H|>/*//1, persists
at long times for |H| > ¢. A similar conjecture [33] for
the “droplet” initial condition was recently proven to be
correct [11,44-46].

Importantly, Janas et al. [34] uncovered a singularity—a
jump in the second derivative—of the large-deviation function
s(H) with respect to H at a critical value of A\H = LH, > 0.
As they showed, this singularity is caused by a spontaneous
breaking of the spatial reflection symmetry x <> —x of the
optimal path of the interface. Subsequently, Krajenbrink and
Le Doussal [12] determined the whole large deviation function
s(H) exactly and reproduced the singularity at H = H,. by
extracting the short-time asymptotics from the exact represen-
tation [40,41] for P(H,t).

Large-deviation functions of nonequilibrium systems can
be viewed as analogs of equilibrium free energy. Therefore,
it is natural to interpret their singularities as (dynamical)
phase transitions (DPTs). Such transitions, of the first and
second order, have been found in several nonequilibrium
models of lattice gases; see Refs. [20,47-49] for reviews.
It is appealing to characterize these systems in terms of (a
nonequilibrium extension of) Landau theory of phase transi-
tions [50], and this has been already done for some of these
models [51-53].

In this paper we extend the short-time analysis of
Refs. [12,34] in two directions. First, we develop an effective
Landau theory of the second-order short-time dynamical phase
transition at H = H,.. We introduce an order parameter which
quantifies the spatial-reflection asymmetry of the optimal path
of the interface. As a result, the large deviation function of the
height as a function of the order parameter plays a role similar
to that of the equilibrium free energy in the standard Landau
theory [50]. Second, we generalize the problem by studying
the probability distribution P(H, L,t) of the two-point height
difference H = h(L,t) — h(0,0). An exact representation for
the distribution of this quantity is unknown. We find that, in
the vicinity of the critical point H = H,, the quantities AH
and L/+/t play the roles of inverse temperature and external
magnetic field, respectively, of the equilibrium second-order
phase transition. Our effective Landau theory yields a de-
tailed characterization of the dynamical phase transition in
terms of the critical exponents which describe the singular
behaviors of the order parameter and of the large-deviation
function of P(H,L,t) as one approaches L = 0 and H = H,.
In particular, we find that, at supercritical H, a change in
sign of L is accompanied by a first-order dynamical phase
transition.

Away from the second-order phase transition, we determine
the scaling forms of P(H, L,t), and calculate the corresponding
scaling functions and coefficients, in the following limits. For
arbitrary H and sufficiently large L/+/7, the height-difference

distribution is Gaussian and independent of time:
2

v

—InP(H,L,t) >~ .

nPULLD = B

For small H, the process is approximately described by

the Edwards-Wilkinson (EW) equation [54], and the height-

difference distribution is Gaussian but, in general, time-
dependent:

“

vI2H? (L

The scaling function g(...) is described by Eq. (41) below.
It decreases monotonically as a function of [¢| = |L|/ Jvt. At
¢ =0 g = /7 /2in agreement with previous work [34,55]. At
large |£| g(£) =~ 1/]€|, and Eq. (5) coincides with Eq. (4).

The tails of the height-difference distribution are non-
Gaussian and asymmetric. For large positive A H we find the
following scaling behavior:

P Ly~ WHEE ( L ) ©®)
nPHLD =5 I )

The scaling function f(...) is given by Eq. (46) below. It
decreases monotonically as a function of |n|, where n =
L/~ AHt. At L =0 we obtain f = 4+/2/3, which corre-
sponds to the |H|*?/4/t tail of the Baik-Rains distribution
[12,34,43]. The large-|n| asymptote, f(|n| > 1) = 1/|n]|, is
consistent with Eq. (4).

Finally, for large negative A H we obtain

InP(H,L.1) 4v2 < AH L2>5/2 )
—1In L)y~ ——— [ —AH - — | .
157w DA/t 2t

This tail is independent of v. For L = 0 it reproduces the
|H |*? /1 tail found previously [12,34].

All the asymptotic results (4)—(7) show that the probability
of observing an unusually large |H| for stationary interface
increases with |L|. This important observation is also sup-
ported by our numerics for moderate H, not captured by these
asymptotics.

The remainder of this paper is organized as follows. In
Sec. II we present the OFM formulation of the problem.
In Sec. III we define a proper order parameter and develop
the effective Landau theory: first for L = 0 and then for
L # 0. In Sec. IV we obtain the asymptotics (4)—(7) of the
height-difference distribution, and the corresponding optimal
paths of the interface. We summarize and discuss our results in
Sec. V.

II. OPTIMAL FLUCTUATION METHOD

A. OFM equations and constraints

As we already mentioned, the OFM has been employed
for the analysis of the KPZ equation in many papers [23-38].
For the two-sided Brownian interface (3), the derivation of the
governing equations closely follows that of Ref. [34], so we
can be brief.

We introduce the observation time 7 at which the interface
height difference, A(L,T) — h(0,0) = H, is measured. We
assume, without loss of generality, that A < O [56]. The
rescaling ¥ = x/~/vT, 7 =1t/T, h = |A|h/v brings Eq. (1) to
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the dimensionless form [32]
h = 9th — 5(B8:h)* + Ve E(x.), ®)

where € = DA2V/T/v*/? is the rescaled noise magnitude,
and we suppress the tildes for brevity. The interface height
difference H (rescaled by v/|A|) is measured between the
(rescaled) points x =0andx =¢ =L/ ST , that is,

H = h((,1) — h(0,0).

In the weak-noise (that is, short-time) limit, € << 1, one can
evaluate the proper path integral of Eq. (8) via the saddle-point
method. This leads to a minimization problem for the effective
action. For the stationary interface, the effective action has two
terms: s = sayn + Sin, Where

IR 1 2
Sayn = 5 / dt f dx[a,h —h+ E(ath] 9)
0 —00

is the dynamic contribution and

Sin = / dx (8:h)?|,_, (10)

is the “cost” of the initial height profile [34]. It is convenient to
recast the ensuing Euler-Lagrange equation into two Hamilto-
nian equations for two canonically conjugated fields: h(x,t)—
the optimal history of the height profile, and p(x,t)—the
optimal realization of the noise £&. The Hamiltonian equations
are [25,28,32]

SH 1
h = — = 3%h — =(3:h)> + p, 11
th =3 = 0ch = 5 (@8:h) +p an
SH

where
H = / dx p[37h — (1/2)(3,:h)* + p/2]

is the Hamiltonian. Note that p undergoes rescaling
[\ Tp/v — p. The condition h(x = £,t = 1) = H leads to
px,1) = Ay d(x —0), 13)

where A is a Lagrange multiplier, ultimately determined by
the rescaled H . The initial condition for the stationary interface
follows from the variation of the total action functional s over
h(x,t = 0) and takes the form [34]

p(x,t = 0) +20%h(x,t = 0) = A18(x). (14)

To prevent the action from diverging, p(x,#) and 9, 2 (x,0) must
decay sufficiently rapidly at |x| — oo. Finally, we require

hx=0,=0)=0 and h(x =0t =1)=H. (15)

The first equality is simply a convenient choice of the reference
frame. After solving the OFM problem, we can evaluate s =
Sdyn + Sin, Where sqy, can be recast as

1 1 o0
Sdyn = —/ dt/ dx p*(x,1). (16)
2 0 —00

From here we can obtain P up to a pre-exponential factor:

—InP ~s/€, 0or
32 (|/\|H L ) an
S b
DT voNWT
in the physical variables. The action s is the large deviation
function of the height-difference distribution at 7 — 0.

It has been recently shown that, in addition to the standard
KPZ symmetries [7], the KPZ equationin 1 4 1 dimension has
an additional symmetry [38,57-59]. At the level of the OFM,
this symmetry is manifested in the invariance of Eqs. (11) and
(12) under the transformation

—InP(H,T,L) ~

—h(x, —t) = h(x,t), p(x, —1)+28%h(x, —t) = p(x,1).
(18)

A remarkable property of the stationary interface is that this
additional symmetry is respected by the boundary conditions
in time. More precisely, the entire OFM problem (11)—(15) is
invariant under the transformation

H—h(—x,1 —t)—= h(x,2), (19)

p(t —x,1 — 1) +202h(L — x,1 — 1) — p(x.1), (20)

which involves, in addition to the symmetry (18), the well-
known mirror-reflection KPZ symmetry x <> —x. It immedi-
ately follows that, in the regime of parameters where there is a
unique solution to the OFM problem, the solution must respect
the symmetry (19) and (20). In particular, the optimal interface
history must obey the combined symmetry

h(x,t)=H —h(f —x,1 —1). 2n

Where multiple solutions to the OFM problem exist, some of
them could, in principle, break its symmetries. However, we
found, through perturbative analytical solutions and numerics
(see below), that the combined symmetry (21) is respected
even when multiple solutions exist. Moreover, we argue that
for £ = 0, the symmetry (21) must hold, because if it were
spontaneously broken, one of the branches of the large-
deviation function s(H) would have an additional singularity
(besides the singularity at H = H.). However, we know from
the exact solution [12] that this is not the case. We exploit
the symmetry (21) below when we have to choose the correct
solution out of families of solutions of reduced problems.

III. DYNAMICAL PHASE TRANSITION
A.L=0

As found in Refs. [12,34], for £ = 0, a second-order dynam-
ical phase transition occurs at H = H, = —3.70632489. ...
For H < H, (which in view of H. <0 are supercritical
heights) the optimal history A(x,t) spontaneously breaks the
spatial reflection symmetry x <> —x, causing a nonanalyticity
of the large deviation function s(H) at H = H.. In the
subcritical region, H > H_, the problem (11)—(15) admits a
unique solution for the optimal path which, at all rescaled times
0 <t < 1, is symmetric with respect to x. In the supercritical
region H < H, the problem (11)—(15) has three solutions:
a (nonoptimal) spatially symmetric one and two additional
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spatially asymmetric solutions which are mirror reflections
of each other around x = 0 [34]. This situation calls for an
effective Landau theory which we now formulate.

We start by choosing a suitable order parameter, which
quantifies the asymmetry of the optimal interface at = 0 [60].
As such we adopt the difference between the initial “costs” of
the right (x > 0) and left (x < 0) halves of the system,

) 0
8sin = / dx (9:h)*|,_, — f dx (9:h)|,_,.  (22)
0 —00

Next, we define a nonequilibirum analog of the Landau free
energy F(H,A) as the minimum of the total action s = sj, +
Sdyn under two constraints: £(0,1) = H and

o0 0
/ dx (9:h)*|,_, — / dx (3:h)*|,_, = A, (23)
0 —00

and the additional condition %4(0,0) = 0. The true action,
unconstrained by Eq. (23), is then obtained via an additional
minimization over A:

s(H) = min F(H,A). 24)

As we will see shortly, —H plays the role of inverse tem-
perature of equilibrium systems. The new constraint (23)
can be incorporated into the minimization procedure of s
via an additional Lagrange multiplier A,. This results in a
modification of the initial condition for the OFM problem, so
that Eq. (14) gives way to

p(x,t = 0) + 28, {[1 + sen(x)A»18,:h(x,t = 0)} = A18(x).
(25)

The values of A and A; are ultimately set by H and A.

When A, = 0, Eq. (25) coincides with Eq. (14). Therefore,
we expect A, to vanish for all the solutions of the OFM
problem (11)—(15): for the unique solution at H > H, and
for the three solutions (the nonoptimal and the two optimal) at
H < H,.Further, the solutions, for which the second Lagrange
multiplier A, vanishes, should correspond to local extrema of
the “free energy” F(H,A) as a function of A. We therefore
expect F(H,A) to have an extremum at A = 0 at all H and,
in addition, two extrema at A = £A, # 0 for supercritical H.
As we now show, our numerical results fully support these
predictions.

Figures 1(a) and 1(b) show F(H,A) as a function of
A at fixed H, for H = —3 and H = —5, respectively. We
obtained these results by solving the OFM equations with the
Chernykh-Stepanov back-and-forth iteration algorithm [61].
The results strongly support the Landau picture: In the regime
|H| < |H.|, the minimum of F is at A =0, whereas in
the regime |H| > |H.|, A = 0 becomes the point of a local
maximum of F, and there are two minima at A = +A,. As
we verified numerically (not shown), the transition between
the two regimes indeed occurs at H = H,. For supercritical H
the dependence of A, on H near the transition is predicted
by Landau theory to be A, ~ (H, — H)"/? (corresponding
to the critical exponent 8 = 1/2 [50]). The large deviation
function s exhibits a jump in its second derivative, 8%,s, at
H = H, [12,34]. This corresponds to the critical exponent
o = 0, which describes the behavior 3121s ~|H — H.|™% of
the “specific heat” near the phase transition, also in accordance
with Landau theory [50].

-20 -10 0 10 20 S20 -0 0 10 20
A A

FIG. 1. The effective Landau free energy F(H,A,{) as a function
of Aat{=0,H=-3(),{=0,H=-5(b),£=0.05,H =-5
(c),and £ = 0.5, H = —5 (d). The parameters A, —H, and ¢ take the
roles of order parameter, inverse temperature, and external magnetic
field, respectively.

B. £ # 0 plays the role of external magnetic field

We now extend our analysis to £ # 0 by writing

s(H, ) = mAin F(H,A ) (26)

and extending the definition of F' to nonzero £ by modifying the
constraint at t = 1 to h(¢,1) = H. Near the phase transition,
|H — H.| < |H,|, the parameter £ has a role analogous to the
external magnetic field in Landau theory [50]. Indeed, for £ #
0 the spatial reflection symmetry x <> —x is broken, and the
minimum of F is at a nonzero A, even for subcritical H. For
supercritical H, a small but nonzero £ causes one of the minima
of F(A) to be lower than the other, making it optimal. For
larger £, only one minimum remains. Our numerical solutions
demonstrate these features in Figs. 1(c) and 1(d) for H = —5
and two different nonzero values of £: 0.05 and 0.5. Overall,
Fig. 1 strongly suggests that, in the vicinity of H = H, and
£ = A = 0, F has the standard mean-field Landau form

F(H,A,0)
= Fo(H) + a;(H — H)A? + au A* — a3l A+ -, (27)

with o) 3 > 0. This effective Landau theory yields two
additional critical exponents. The “susceptibility” diverges at
the transition as [50]

dA,
¢ |,

with y = 1, and the dependence of the order parameter on the
“external magnetic field” £ at H = H, is

Alpy—y, ~0'°, (29)

~|H — H|™", (28)

with § = 3 [50]. That the critical exponents «, B, y, and &
all take their mean-field Landau theory values follows directly
from Eq. (27).

The effective Landau theory implies that, at fixed super-
critical H, there is a first-order dynamical phase transition,
corresponding to a jump of ds/d¢, when £ changes sign. This
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FIG. 2. The minus logarithm of the short-time (¢ < v°/D?A%)
height-difference distribution at fixed L and ¢, plotted schematically,
for L >> /vt (a) and L < /vt (b). See main text for details.

transition occurs because the optimal path switches between
two asymmetric solutions as ¢ changes sign. This feature is
most easily seen in the —H >> 1 tail, where the optimal history
can be found analytically; see Sec. IV C below.

We checked that, for £ # 0 and A, = 0, our numerical
solutions exhibit the combined symmetry (21). We do not show
these plots here.

IV. PERTURBATIVE SOLUTIONS

In this section, we move away from the second-order phase
transition and solve the OFM problem (11)—(15) perturbatively
in several regimes: the large |£| limit, the Edwards-Wilkinson
regime (which describes typical fluctuations of the KPZ in-
terface at short times), and the tails AH > 1 and —AH > 1
for fixed £. The main results of this section are summarized
in Egs. (4)—(7) and plotted schematically in Fig. 2. A phase
diagram of the system in the (L/~/T,H) plane is shown in
Fig. 3.

A. Stationary ramp at large |¢|

The solution is the simplest in the limit where |£| is larger
than any dynamical length scale in the problem. Then, in the
leading order, the dynamics can be neglected. The optimal
profile % is stationary and can be found by minimizing the initial
“cost” sj, over profiles i(x) obeying the constraints 2(0) = 0

jnvise?™®
S 2
~ ___ __________ a- = A
E 22 FelwiaEds - Wilkinson 33
X T T O Q)
| 2 Q -

=

L/WT

FIG. 3. Phase diagram in the (L/+/t,H) plane. In the stationary
ramp, Edwards-Wilkinson (EW), traveling soliton/ramp and inviscid
regimes, the height distribution P(H,L,t) is given by Eqs. (4)—(7),
respectively. The approximate boundaries of the EW and stationary-
ramp regimes are denoted by the dashed and dotted lines, respectively.
There is a second-order dynamical phase transition at the point
(0,H,.) = (0,—3.70632489 ...) [12,34], as it is crossed in the vertical
direction, and a first-order transition when the solid line is crossed.
The phase diagram is symmetric with respect to a change of the sign
of L, so only the regime L > 0 is shown.

and h(€) = H. This results in a ramplike profile, which for
£ > 0 takes the form

0, x <0,
hx,t)~ {Hx/t, 0<x </, 30)
H, x> L.

For ¢ < 0, all the inequality signs in Eq. (30) should be
reversed. The action is given, in the leading order, by s ~ sj, ™~
H?/|¢|, while sayn 18 negligible. The corresponding height-
difference distribution Eq. (4) is Gaussian and independent
of time. This solution is valid for [£] > max {1,/[H][} [62].
Equation (4) implies that, for sufficiently large |L|, the prob-
ability of observing an unusually large |H| grows as |L| is
increased. As we observed, this is the case not only in the
stationary-ramp regime, but for any H and ¢ (at short times
that we are dealing with here), see below.

B. Edwards-Wilkinson regime

For sufficiently small H the OFM problem can be solved
via a regular perturbation expansion in powers of H or
A1[32,34,63]. One writes h(x,t) = Ajh(x,t) + A%hz(x,t) +

- and similarly for p. In the leading order in A, Eqgs. (11)
and (12) become

dhy = 97k + pi, (31)

dhp1 = —03;p1. (32)

These linear equations correspond to the OFM theory for the
Edwards-Wilkinson (EW) equation [54]

dh =vd*h +VDE(x.1), (33)

where the KPZ nonlinearity does not play a role. Solv-
ing Eq. (32) backward in time with initial condition
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p1(x,t = 1) = §(x — £), we obtain

p1(x,t) = G(x,£,1 — 1), (34)
where
1 (x—y)
G(x,y,t) = Nz exp |:— ” i| 35)

is the Green’s function of the heat equation. Equations (14)
and (34) yield
20%h)(x,t = 0) = 8(x) — G(x,£,1). (36)

Integrating Eq. (36) twice with respect to x, and using the
conditions 4(x = 0, = 0) = 0and 0, h(Jx| — oco,t = 0) =0,
we obtain

2 1 2
T — e 3(x=0

27

4 £
—) + ¢ erf(§>:|, 37

+%|:|x| —x—0 erf(x

where erfz = (2//7) [, e~t’dr. We now solve Eq. (31) and

find
Sl ) o) ()

x—0)2 x2
["F —VT—1e 55 + Ve 5], (38)

hi(x,t =0) =

hi(x,t) =

1
_l’_
27
see Fig. 4, yielding

H=Ah(1) = A1|:§erf(§> + %} (39)

We now evaluate the action:

§ = Sin + Sdyn

= Af{/ dx[d,h1(x,0)]* +

/ dx/ dtpl(x t)}

¢ (O e %
= A7| —erf 40
! [46 ( ) 27 } 0
Plugging Eq. (39) into Eq. (40), we obtain Eq. (5) with

2 -1
0= |eert( L) 4 22 @1

= |Lerf( = ;

& 2) T T /m

see Fig. 5. In the limit || <« 1, we obtain

52
s X~ ﬂ(l — Z)Hz

which, in the particular case £ = 0, reproduces the well-known
result [34,55]. Taking the opposite limit |£| >> 1 in Eq. (38),
we find that the optimal profile approaches the stationary
ramp (30). Correspondingly, s ~ H?/|¢| in this limit, as we
already know from Sec. IV A. Note that g is a monotonically
decreasing function of |£|. It follows that the variance of the
distribution P(H,L,T) increases with |L|.

x,t)/H

N

h

X
2.0 (b)
- 15
l;: 1.0
Q
0-5 /A\

-3 -2 -1 0 1 2 3 4
x

FIG. 4. The optimal history of the interface (a) and the optimal
realization of noise (b) in the EW regime, for £ =0.5, at r =
0,0.25,0.5,0.75, and 1 from bottom to top (a) and ¢ = 0,0.5, and
0.95 (b).

As can be seen from Fig. 4(a), the optimal profile i(x,?)
satisfies the symmetry (21). In addition, it exhibits corner
singularitiesat x = 0,r =0andatx = ¢, = 1.

The EW regime requires |A | < 1, or equivalently |H| <«
max {1,|£|}. In the next order of the perturbation expansion
in Ay, one can calculate the third cumulant of the height-
difference distribution, which already depends on A. For
flat initial condition such a calculation was performed in
Ref. [32].

Vo

2
T 06
(7]
0.4}
0.2} , )
0 2 4
171

FIG. 5. The action s vs || in the EW regime as described by the
scaling function g(¢), see Egs. (5) and (41), together with its small-
and large-|¢| asymptotes (dashed and dotted, respectively).
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(a)

0/

l+c
X
(b)
1
Q to1 pt=—=: t=0
2
0/ l+c

X

FIG. 6. The optimal history (a) and optimal realization of the
noise (b) in the AH > 1 tail for £ > 0. Here H = —2c¢(£ + ¢).

C. Large positive AH

At very large negative H, or A, the optimal solution is
provided by one of the two traveling solutions which involve
a soliton of p and a “ramp” of /. The left-moving solution is
given by

Prei(x,1) = —czsechz[g(ct +x—€— c)], (42)
Mer(x,1) > 21n[1 4 1791 — 2¢(ct + x),  (43)

for x > —ct, and pPpep(x,1) = hie(x,t) >~ 0 for x < —ct; see
Fig. 6. These solutions are simple extensions of those obtained
in Ref. [34] for £ = 0; see also Refs. [23,25-27]. Each of
these solutions can be also described as a traveling “shock-
antishock” pair of the field V (x,t) = d,h [25,26,64,65].

The left-moving solution is optimal (that is, it minimizes
the total action s) for £ > 0. The optimal solution for £ < 0
is a right-moving soliton and ramp Oyigh((x,?) and Argn(x,1),
respectively, given by the mirror image of Eqgs. (42) and (43)
with respect to x = 0. The left- and right-moving solutions
correspond to the two local minima of the Landau free energy
F as a function of A in the H — —oo limit; see Sec. III and
Fig. 1(c).

The ramp velocity satisfies ¢ = —A /4 and sgyn = 4c3/3
[34]. Further, si, = 4c%(£ + ¢), while H = —2¢(€ + ¢), so ¢

2

f(n)
5[5

w |

n

FIG. 7. Solid line: The scaling function f(n) which describes the
AH > 1 tail of the height-difference distribution; see Egs. (6) and
(46). The transition from a smooth curve, similar to that shown in
Fig. 5, to a curve which exhibits a corner singularity at n = 0 (the
solid line in this figure) occurs at H = H,. and has the character
of a swallowtail bifurcation [66]. Also shown are the action of the
nonoptimal traveling ramp solution (dot-dashed) and the action of the
nonoptimal solution which describes two merging p solitons (dotted).

can be expressed through H and ¢:

U+ =2H
_f.

Altogether we find that the action of the left-moving ramp
solution is s(H,€) = |H|*? fiern(¢//TH]), with

fen@m =3 = V2 + 2’ + 20> +2),  (45)

and similarly for the right-moving solution with fiien(n) =
fiett(—n). The left-moving (right-moving) solution is opti-
mal for £ >0 (£ <0), resulting in Eq. (6) with f(n) =
min { fiere (1), frign(7)} given by

F) = 1nl = V0> +2)(Inl +2v/n> +2); (46)

see Fig. 7. The asymptotics of f(n) are

c (44)

W2 _ g

nl=+--, <1,

fa) = { 2o X (47)
m—w-F"'» Inl > 1.

Since f is monotonically decreasing with |7|, the tail —H >
1 is enhanced as |L| is increased. For £ = 0 we obtain s =
4ﬁ |H |3/ 2 /3 in agreement with Refs. [12,34], and coinciding
with the AH > 1 tail of the Baik-Rains distribution [43]. At
small but nonzero ¢ we obtain

5~ |H|3/2<%§ — 2%) (48)

At subcritical H, the action as a function of £ is described
by a smooth curve which is qualitatively similar to the one
shown in Fig. 5. In contrast, at supercritical H, one observes
a corner singularity (a jump of ds/d¢) at £ = 0 as in Fig. 7.
This first-order dynamical phase transition is predicted by our
Landau theory in Sec. III B. It has the character of a swallowtail
bifurcation as a function of the parameters H and ¢ [66].

In the opposite limit |£|/+/[H] > 1 the velocity of the
ramp ¢ ~ —H /(2¢) isrelatively small: |c| < |£|. Inthe leading
order, the ramp (30) does not move at all, leading to the action
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0

-50
-100

< -150
=200
-250
=300

-100
=200
=300
-400
-500
—600| (b)

-5

10
b'¢

FIG. 8. Example of exact solutions (50) and (51), which describe
merger of two different counterpropagating p solitons and subsequent
motion of a single soliton. Here N = 3,¢; = X; = 0,¢; = —10,¢3 =
15, X, = ¢3/2 and X3 = ¢,/2. Shown are (a) 4 vs x at times ¢ =
0,1/4,1/2,3/4 and 1 from top to bottom and (b) p vs x at timest = 0
(solid, thick), 1/4 (dot-dashed), 1/2 (dashed), 3/4 (dotted), and 1
(solid, thin). In the limit AH > 1, this type of solution describes
the nonoptimal third solution (h,,,0n,) to the OFM problem, with
¢ =cy+ c3 and H = 2c¢,c¢3. The action of this nonoptimal solution
is given by Eq. (52) and shown by the dotted line in Fig. 7.

s =~ sin >~ H?/|£|. In the subleading order we obtain
|H|

(1-%)

As we mentioned earlier, the optimal profile obeys the com-
bined symmetry (21). This symmetry is evident in Fig. 6(a).
For ¢ = 0 this is the case even though the optimal profile is not
mirror-symmetric in space.

In addition to the left- and right-moving ramp solutions,
there is a third (nonoptimal) solution py,(x,?) and hp(x,7). It
describes a collision and merger, at t = 1/2 and x = £/2, of
two different oppositely moving p solitons; see Fig. 8. The
merger is mediated by the ordinary (p = 0) shock of V = 9,h
which starts at t =0 at x = 0 and arrives, at 1/2, at the
same point x = £/2 as the two solitons. Upon merger a single
traveling soliton is formed which arrives at the point x = £ at
t = 1. This solution corresponds to the local maximum of F(A)
at H — —oo0; see Fig. 1(c). Remarkably, this solution belongs
to the family of exact multisoliton solutions of Egs. (11)

H2

s~
€]

(49)

and (12), discovered in Ref. [34]:

N o cilcit—x+X;)
h(x,t) = 21In Coimi ™ ,
N . (C“ _ cj)zec,-(cit—x+Xi)+cj(cjz—x+X/)
i,j= i
(50
Z?]jzl(ci _ Cj)Zeci(cit—x+Xi)+cj(cjl—x+X,-)
7t = - :
p(x ) N ci(cit—x+X;) 2
[Zz:l e ]
(51)
The particular case N = 3,¢; = X| =0,
L — 02 —-2H L+ 02 —-2H
)=, (3= — )
2 2

X, = c3/2 and X3 = ¢, /2 approximately satisfies all of the
boundary conditions in the AH — oo limit. It also obeys the
combined symmetry (21); see Fig. 8. The arbitrary constant C
can be chosen so that 4(0,0) = 0.

We will skip a more detailed description of this beautiful but
nonoptimal (and, therefore, nonphysical) solution and confine
ourselves to presenting its action:

s = HP? fu(€/IHD),  fu() = 30"+ 2%

see Fig. 7. Interestingly, it is equal to the sum of the actions of
the other two solutions: fi,(7) = fier(n) + fiign(n), where the
functions fie(n) and frign(n7) were defined in Eq. (45) and in
the subsequent paragraph. Moreover, the velocities ¢, and c¢3
of the two merging solitons are equal to the velocities of the
one-soliton solutions pje and prignt, respectively. Finally, A,
has the property hn(|x| — oo,t) >~ H/2.

In the particular case £ = 0, the solution (%, 0n) is Sym-
metric with respect to x <> —x, and its action is s(H) =
8+/2 |H|*? /3. As observed in Ref. [34], this action coincides
with the corresponding tail of the Tracy-Widom distribution
[67], which is nonoptimal for stationary interface. As ob-
served in Ref. [12], this tail is described by the A\ H — oo
asymptote of a nonphysical branch obtained via analytical
continuation of the exact subcritical large-deviation function
at short times. The correct branch is obtained via a nonanalytic
continuation [12].

The results of this subsection are valid for ramp veloci-
ties (44) much larger than unity, or equivalently for —H >
max {|£],1}.

(52)

D. Large negative A H

In this regime the optimal path is large-scale in terms of
both 4 and p, and one can neglect the diffusion terms in
Egs. (11)-(14). The resulting problem is mappable into a
one-dimensional inviscid hydrodynamics of a compressible
“gas” with density p(x,7) and velocity V (x,t) = d,h(x,t) [32]:

dp +0:(pV) =0, (53)

WV +VaV = dp. (54)

This “gas” has negative pressure p(p) = —p?/2. The problem
should be solved subject to the boundary conditions

plx,t =0)=A16(x), px,t=1)=A5(x—4£). (55)
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Since diffusion is neglected, so must be sy, [34]; therefore,
§ = Sqyn Up to subleading corrections.

The solution to the problem (53)—(55) for £ # 0 can be
expressed, by using a Galilean transformation, through the
solution of the same problem with ¢ = 0. The latter solution
was obtained in Ref. [34]; see also Ref. [33]. In the “pressure”-
dominated region |x — £¢| < £(¢), the solution for £ % 0 can
be written as

p(x,t) = po(x — £1,1), (56)
Vix,t) = Vox — Lt,t) + £, (57)
where
Vo(y,t) = —a(t)y (58)
and
y?
po(y.1) = r(t)[l - (t)} (59)

are the uniform-strain flow solutions for £ = 0 [33,34]. The
functions a(t), £(¢), and r(¢) were determined in Ref. [33]. As
shown below, the action, which we now calculate in terms of
H and ¢, is completely determined by the pressure-dominated
region.

Equations (56) and (16) imply that the action, expressed
via the Lagrange multiplier A, does not depend on £. That is,
s(A1,€) ~ so(A1), where so(A;) ~ (3m)*3 A3 /5, the action
for £ = 0, was found in Ref. [34]. For £ = 0, the calculation
proceeds as follows [33]. Neglecting the diffusion term in
Eq. (11) and using V(0,7) = 0, we obtain

1
Ho(A1) = h(0,1) — 7(0,0) :/ dt 3,h(0,1)
0

1 1
=/ 00(0,1)dt =/ r(t)dt. (60)
0 0

Evaluating the integral Eq. (60), one obtains Hy(Ap) =~
(37 A1)*? /2, Teading to so(Ho) = 4+/2 H'* /(157) [33,34].

For £ # 0, we again neglect the diffusion term in Eq. (11),
and then use Eqgs. (56) and (57) to obtain

H=hx=4¢t=1)—h(x=0,t=0)

L
= dt—[h(x = £t,t
/0 © hix = 01,0
1
— / dt[€d,h(x = €1,8) + 8,h(x = £1,0)]
0
! 1
~ / dt[EV(x = 01,1) — zvz(x =0t,0)+ p(x = Zt,t)}
0

1 1
= / dt|:€(Vo +0) — =(Vo+ 0%+ p0j|
0 2 x=0
£2
= E+H0(A1). (61)

As a result, s(H,l) >~ so(Hy=H — E2/2), which yields
Eq. (7). s(H,£) is a monotonically decreasing function of |¢],
implying that as |L| is increased, it becomes more likely to
observe an unusually large positive H.

For |x — £t] > £(t), p(x,t) vanishes, so this region does
not contribute to the action. Here, V (x,#) satisfies the Hopf
equation,

»V + VoV =0. (62)

The solution of this equation should be continuously matched,
at |x — £t| = £(t), with the pressure-driven solution. It should
also obey the boundary conditions V(x — *£o00,t) = 0. In the
particular case £ =0, V(x,#) must respect the symmetries
Vo(x,t) = —Vo(—x,t) = —Vy(x,1 — t), which are directly re-
lated to the spatial mirror symmetry of the OFM problem and to
the symmetry (21). These symmetries cannot be spontaneously
broken, as otherwise a dynamical phase transition would
occur at some value AH < 0. Such a transition, however,
is impossible, because the exact short-time large-deviation
function for £ = 0 is known to be analytic atall AH < 0 [12].

The symmetry Vo(x,r) = —Vo(x,1 —¢) [38] and the exact
short-time results for P(H,L = 0,¢) [12] have been uncovered
very recently. They were unknown to the authors of Ref. [34],
and this led to a mistake in their Hopf-flow solution (see Fig. 8
of their Appendix C). Although this mistake did not affect
the action, for completeness we now present the correct Hopf
solution for £ = 0.

In the Hopf region |x| > £(¢), there are multiple solutions
to Eq. (62) which can be continuously matched to the pressure-
dominated region while satisfying the boundary conditions at
x — oo via a weak discontinuity or a shock. The ensuing se-
lection problem is a price to pay for the inviscid approximation:
as argued above, with account of diffusion the OFM problem
has a unique solution in the A >> 1 tail, and it must respect all
of the symmetries of the problem. Imposing the symmetry (21),
we now construct the correct solution at 0 < ¢ < 1/2 from the
known solutionat 1/2 < ¢ < 1[33]. Inthe Hopfregion Vy(x,#)
is given in terms of ¥ = X/A}/S and Vy(%,1) = Vo(x,t)/A}/3
as follows. In the region |%| > 3/(4r,), where r, = (3m)*/3/4,
Vo(x,t) vanishes. For |%| < 3/(4r,), the solution is given by
the algebraic equation

sgn(t — %)i — Vo (1)

‘70 [V 0 3
= 00 (W) | Larct 2063
5 sgn( o)_narc an<2ﬁ>+4r*:| (63)
where
1—1, 0<r<i
_ s x5
Y(t) = ‘ Ler<ld, (64)

This solution, alongside with its counterpart (58) in the
“pressure”’-dominated region, is presented in Fig. 9. V (x,¢) can
be integrated with respect to x to yield /(x,¢). The solution can
also be found for nonzero £. We do not show these cumbersome
calculations because they do not contribute to the action in the
leading order we are after. However, we will comment on one
interesting feature of the solution. In the inviscid limit, the &
profile exhibits cusp singularitiesatx = ¢, = l andatx = 0,
t = 0. Diffusion partially smoothes these singularities, so that
only corner singularities remain. Using the symmetry Eq. (18),
one can show that z(x,# = 1) must exhibit a corner singularity
at the single point where the height is measured. This is true for
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S 1
<
:..:0
x
< -1

-2 - . . . . . . .
00 01 0.2 0.3 0.4 0.5 0.6
1/3
XIA1
FIG. 9. V(x,t) = d,h(x,t) as a function of x for large negative
AH and ¢ = O attimes r = 0.1,0.3,0.5, 0.7, and 0.9, from top to bot-

tom. The solution respects the symmetries Vy(x,t) = —Vo(—x,1) =
—Vo(x,1 —1).

any initial condition [38], as indeed exemplified by all known
particular cases [32-35].

Finally, we check the conditions for the strong inequality
Sin < Sdyn, assumed in this subsection, by comparing the
action (7) with that of the stationary ramp solution (s >~ sj, =~
H?/|£]). We find that the results of this subsection are valid for
H — £2/2 > max {1,]¢/%°}.

V. SUMMARY AND DISCUSSION

In this paper, we built on the results of Janas et al. [34] and
Krajenbrink and Le Doussal [12], who studied the distribution
‘P(H,t) of the two-time height difference H of a stationary
1d KPZ interface at short times, using the OFM and the exact
representation [40,41], respectively. We focused our attention
on the second-order dynamical phase transition—a singularity
of the large deviation function—at AH = AH, > 0, caused
by spontaneous breaking of the reflection symmetry by the
optimal path leading to a given H [34].

We developed an effective Landau theory of the second-
order phase transition by defining a proper order parameter (23)
which quantifies the spatial reflection asymmetry of the opti-
mal interface at + = 0. Here the large deviation function of the
distribution s = —e In P and L H play the roles of equilibrium
free energy and inverse temperature, respectively.

We also generalized the problem by considering the distri-
bution of the two-time height difference between two points
at distance L apart. We found that, near the critical point
H = H,, L//t plays the role of external magnetic field in
the traditional Landau theory. The nonequilibrium analog of
the Landau theory, formulated here, yields critical exponents
which provide a detailed characterization of the singularities
of s and of the order parameter A at the critical point. In
particular, we found that at supercritical H, a change of the
sign of L is accompanied by a first-order dynamical phase
transition. This transition has the character of a swallowtail
bifurcation.

In addition, we evaluated P(H,L,t) analytically in several
limits away from the second-order phase transition by finding

perturbative solutions to the OFM problem; see Fig. 2. Our
asymptotic results for P(H,L,t) are given by Eqgs. (5) and
(41) for small fluctuations, by Egs. (6) and (46) for large
positive AH, and by Eq. (7) for large negative AH. In the
large-|L|/+/t limit, P is given by Eq. (4). We observed that
s is a monotonically decreasing function of |L|/+/f, implying
that increasing | L| facilitates large deviations of H. In analogy
with other initial conditions [32,33], we expect the AH > 1
tail (6) to hold at arbitrary times.

The optimal initial condition A(x,# = 0) which leads to
a given H figures prominently in the solution to the OFM
problem (11)—(15). An interesting question is how this initial
condition is created at earlier, “pre-historic” times, t < 0. We
address this question in the Appendix.

Recently, Le Doussal [68] used the replica Bethe ansatz
to obtain an exact representation for the distribution of the
one-point, two-time height difference 1(0,7) — 7(0,0) for the
KPZ interface for a combined initial condition which is flat at
x < Oandstationary atx > 0. This problem can be generalized
by considering the distribution P(H, L) of the two-point, two-
time height difference H = h(L,t) — h(0,0) with the same
combined initial condition. It so happens that, for very large
positive AH and L > 0, the interface history (43) satisfies
the condition 2(x < 0, = 0) = 0. It is therefore the optimal
history for the combined initial condition of Ref. [68] at L > 0.
Asaresult,the AH > 1 tail of P(H, L) for the combined initial
condition is given by Egs. (6) and (46) for L > 0, whereas
the deterministic part, x < 0, of the initial condition, does not
contribute in the leading order. For L = 0 this tail coincides
with the corresponding Baik-Rains distribution tail [43] for the
stationary initial condition,

42 v|H|P?

—11'1P(H,t) ~ W

(65)

In view of the remarkable robustness of the AH > 1 tail,
observed for all previously studied initial conditions [32-35],
we expect Eq. (65) to hold for arbitrary times. It would be
interesting to check this prediction by extracting the AH >
1 tail, at short and long times, from the exact results of
Ref. [68].

Finally, our order parameter A from Eq. (22) can be
useful for the characterization of atypical initial conditions
which contribute to large deviations of different quantities in
other nonequilibrium models with random initial conditions.
An important example is the asymmetric exclusion process
[47,69,70], where one is interested in atypical statistics of
particle current through a bond. The discrete-lattice version
of the order parameter (22) is the difference between the sums
Zi [hit1(t =0) — h;(t = 0)]2, evaluated on the two halves of
the system.
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APPENDIX: CREATING THE INITIAL CONDITION
h(x,t =0)

Here we briefly outline the optimal interface his-
tory h(x,—oo <t < 0), which leads to a specified profile
ho(x )

For stochastic dynamics in equilibrium the optimal interface
history (the activation history) would coincide with the time-
reversed relaxation history [71]. The KPZ interface, however,
is out of equilibrium even when it is in its steady state. To find
the activation history for a stationary KPZ interface in 1+1 di-
mension, one must solve the OFM equations (11) and (12) un-
der the conditions i(x,t = 0) = ho(x) and h(x,t - —o0) —
const. It is crucial that the solution lies on the invariant
manifold

o(x,1) +28%h(x,t) = 0 (A1)

of the OFM equations [35,38]. The manifold (A1) is related
to the deterministic invariant manifold p = 0 through the
transformation (18). Plugging Eq. (A1) into Eq. (11) leads to
the equation

dh = —3th — 1(3.h)*. (A2)

Equation (A2) does not coincide with the time-reversed de-
terministic KPZ equation, due to the sign of the nonlinear
term. Still, Eq. (A2) can be solved using the Hopf-Cole
transformation. Plugging Q = ¢//? into Eq. (A2) yields the

antidiffusion equation

%0 =-0;0, (A3)

which can be solved backwards in time with the “initial”
condition

O(x,t = 0) = M™/2, (A4)

Notably, the sign in the exponent ¢"/? is opposite to that of the

Hopf-Cole transformation applied to the deterministic KPZ
equation.

The optimal history in terms of h(x,?) is given by h(x,t) =
21n Q(x,t). The dynamical action (16), evaluated on h(x,t)
yields the interfacial cost of ho(x), described by Eq. (10)
[38]. Of course, this fact makes the “prehistoric” dynamical
calculations unnecessary for the purpose of evaluating the
probability of creation of /1((x), in analogy to what happens in
equilibrium systems.

The formal condition for the applicability condition of the
OFM in the “prehistoric” calculation is, as usual, a large
action. Let the desired height profile /¢(x) have a characteristic
height Hy and width Ly, in the physical units. Then the
OFM is applicable if DLo/(vHZ) < 1. This condition is very
different from the condition € = DA%/T / V32 &« 1. The latter
is sufficient for the applicability of the OFM in the description
of the complete one-point height statistics at a specified time
t = T, dealt with in the main text.
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